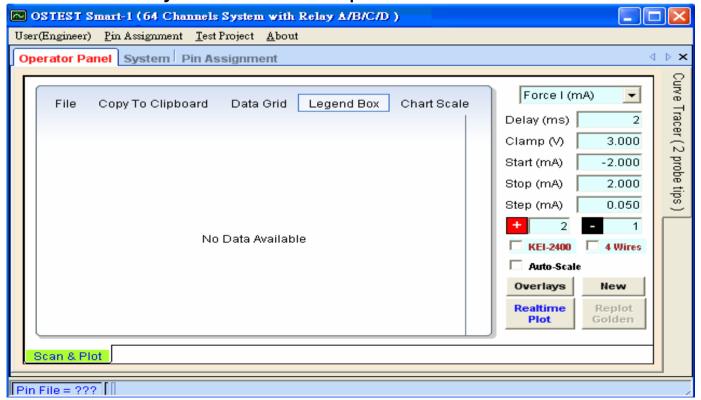
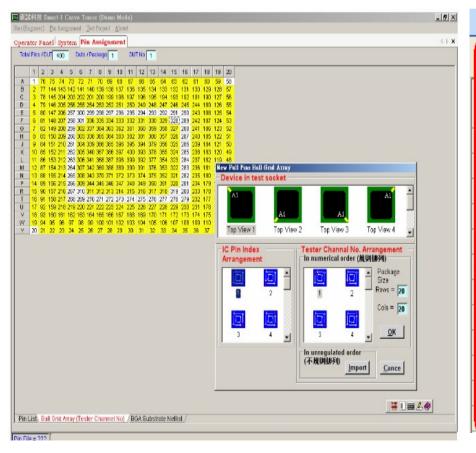

Auto curve tracer

Main Function

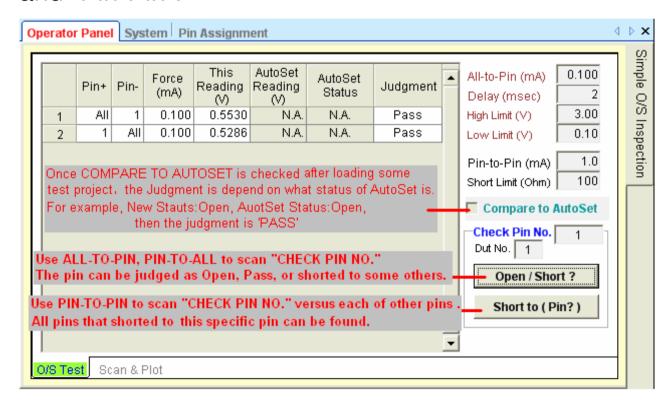

- > Open /Short Test
- > I / V Curve tracer Analysis
- > Idd Measuring
- ➤ Power Leakage Test

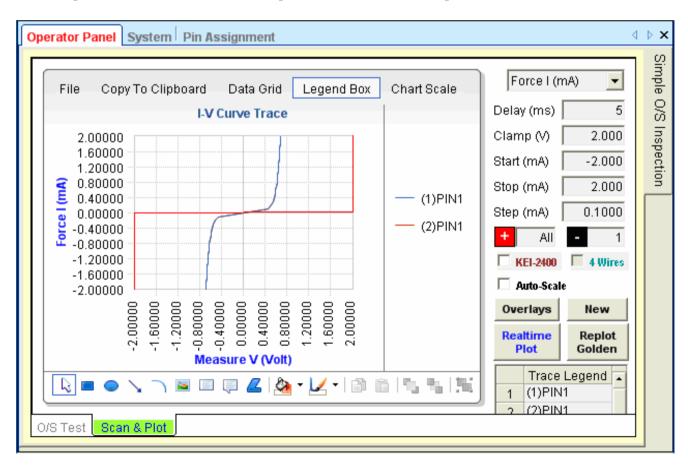
Curve Tracer (2 Probe Tips) for Failure Analysis


On this failure analysis application, only two probe tips are need.
 System offers four specific channels, CH1 (F-) / CH2 (F+) / CH3 (S-) / CH4 (S+), to complete this requirement without the pin assignment definition.

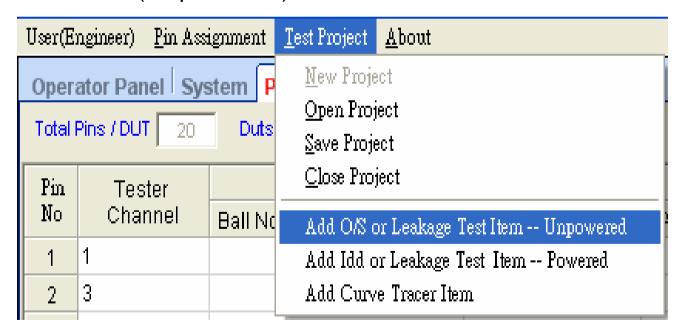
User can easy to find out fail pins I/V curve situation.

Easy to set up Pin assignment:

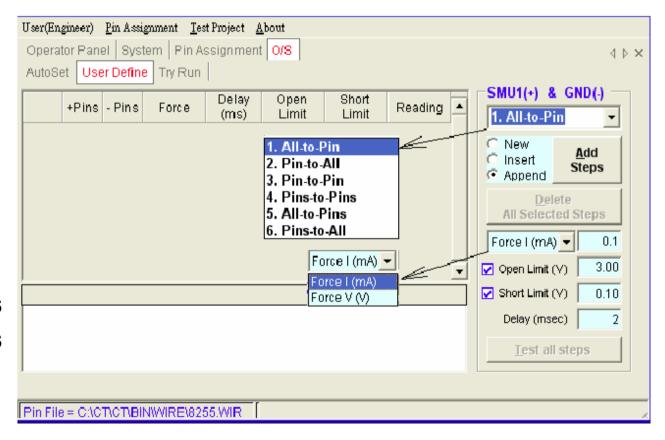

Pin assignment is easily set by a mouse click on the window –based


Operator Panel System Pin Assignment Leakage									
Total	Pins / DUT 96	Duts /	Package 1	DUT No 1					
Pin	Tester		DUT						
No	Channel	Ball No	Finger No	Function Name	Attribution Name	Ξ			
1	1	A1		NC	10				
2	2	A2		NC	10				
3	3	A3		A20	10				
4	4	A4		A11	10				
5	5	A5		A15	10				
6	6	A6		A14	10				
7	7	A7		A13	10				
8	8	A8		A12	10				
9	9	A9		F-VSS	GND				
10	10	A10		F-VCCQ	VCC				
11	11	A11		NC	10				
12	12	A12		NC	10	•			

Simple O/S Inspection

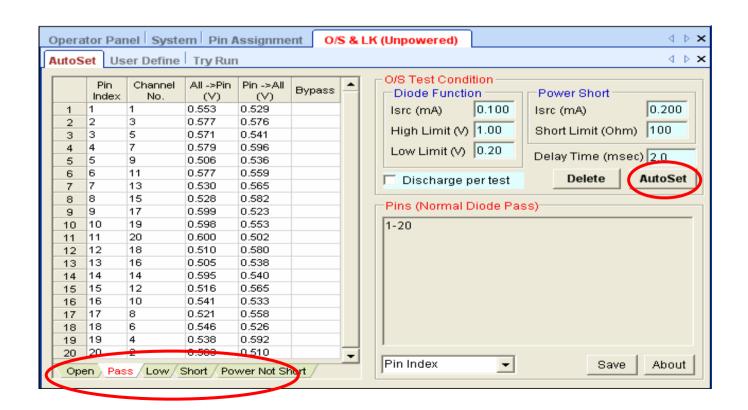

 any tested pins can be selected by software as "All-Pin", "Pin-All" and "Pin-Pin".

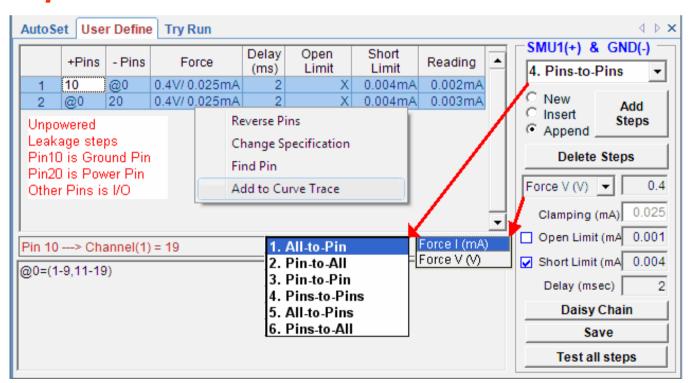
 User can memorize the I/V curve of one golden device and compare with the unknown devices, so it becomes very simple and quick to find out problem samples.



- 'O/S Test or Leakage test item -(Unpowered)'
- After executing "Test Project > New Project" menu and loading the relative pin assignment file, please execute the below menu to open "O/S & LK (Unpowered)" tab.

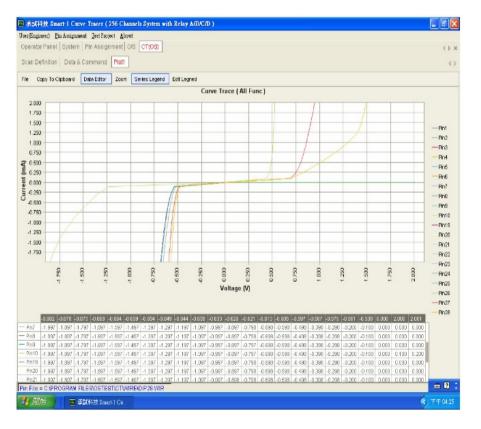
Open /short test:

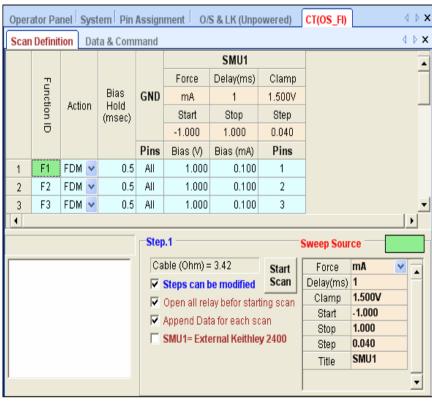

- Autoset
- (1).All to pin
- (2).pin to All
- (3) Pin to pin
- User define
- (1).All to Pin
- (2).Pin to All
- (3).Pins to Pins
- (4).Pins to Pins
- (5).All to pins
- (6).Pins to All


Autoset

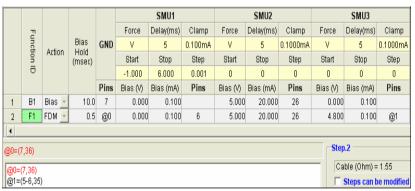
Most of user from the IC packaging manufactory click "AutoSet" button to create test steps that learn from the golden device according to the test condition (Current source, Diode High limit, Diode Low Limit, Power short limit, Source delay time) you set.

Max. Current Source =10mA, 0.01V <= Diode Low Limit < Diode High Limit <= 9V, Clamping Voltage = Diode High Limit + 0.5V

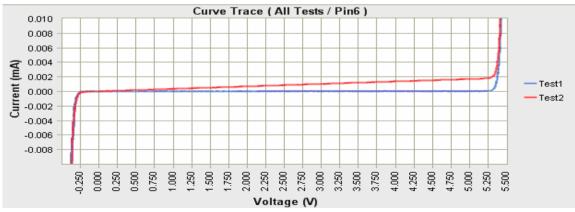

- Unpowered Leakage Test (Force 0.2~0.4V, Short Limit < 0.05mA) for the I/O pins with ESD diode inside.
- Ground Pins → I/O Pins, I/O Pins → Power Pins
- One example to setup unpowered leakage test steps is as below.



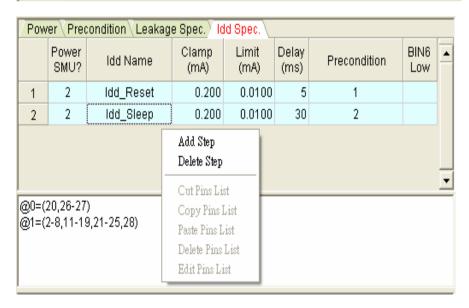
Software Function--- Auto I/V curve tracer Analysis

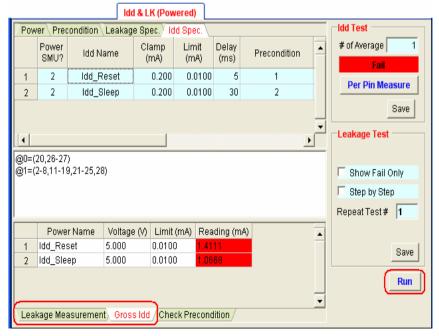

Automatic / Manual plot is available

Can use simple curve tracer function to measure I/V curve of all pins



- Power Curve Tracer
- Step 1→ Add power level to POWER pins, Add precondition level on some input pins,
- Step 2→ Connect SMU1 to the tested pin and force source level from Vss-1V to Vdd+1V for measuring the leakage current.
- Trace1: (Normal) Trace2: (Put one 3Mohm resistance between the tested pin and Vss wittingly)





Idd Measuring

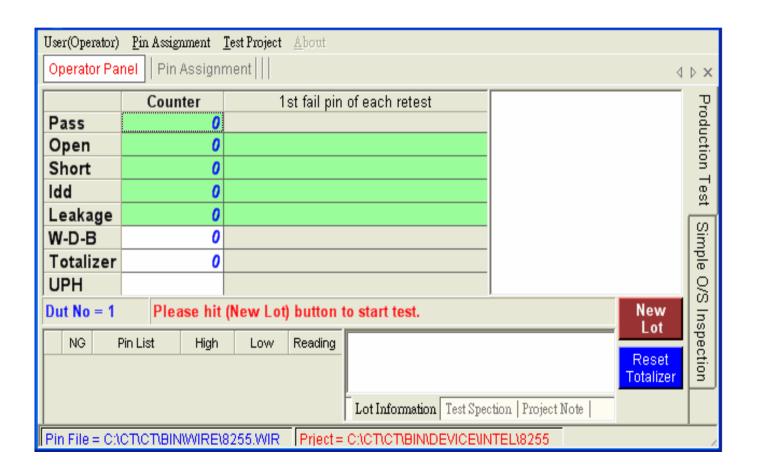
Power Precondition Leakage Spec. Idd Spec.										
	Power Source	Power Name	Voltage (V)	Clamp (mA)	Limit (mA)	Delay (ms)	Pins List			
GND							@1			
SMU2	Yes	P1	5.000	1.000	0.200	30	@0			
SMU3	No	P2	2.5	500	450	5				
SMU1	No	KEI2400	5.000	100	90	5				

- Power Leakage Test
- Create Pin Assignment File for Leakage Test as below.

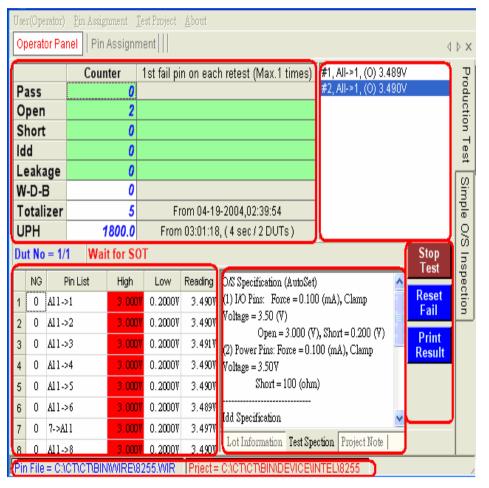
	Tester			DUT			Tester	DUT			
	Channel	Ball No	Finger No	Function Name	Attribution Name		Channel	Ball No	Finger No	Function Name	Attribution Name
1	1			PA3	Ю	21	40			PB3	Ю
2	3			PA2	Ю	22	38			PB4	Ю
3	5			PA1	Ю	23	36			PB5	Ю
4	7			PA0	Ю	24	34			PB6	Ю
5	9			RD*	IN	25	32			PB7	Ю
6	11			CS*	IN	26	30			VCC	vcc
7	13			GND	GND	27	28			D7	IOZ
8	15			A1	IN	28	26			D6	IOZ
9	17			A0	IN	29	24			D5	IOZ
10	19			PC7	Ю	30	22			D4	IOZ
11	21			PC6	Ю	31	20			D3	IOZ
12	23			PC5	Ю	32	18			D2	IOZ
13	25			PC4	Ю	33	16			D1	IOZ
14	27			PC0	Ю	34	14			D0	IOZ
15	29			PC1	Ю	35	12			RESET	IN
16	31			PC2	Ю	36	10			WR*	IN
17	33			PC3	Ю	37	8			PA7	10
18	35			PB0	Ю	38	6			PA6	10
19	37			PB1	Ю	39	4			PA5	Ю
20	39			PB2	Ю	40	2			PA4	Ю

Power Leakage Test

	Power Source	Power Name	Voltage (V)	Clamp (mA)	Limit (mA)	Delay (ms)	Pins List
GND							7
SMU2	Yes	VCC	5.000	20.0	10.0	5	26
SMU3	No	P2	2.5	500		5	
Power	Power / Precondition / Leakage Specification /						


	GND	SMU	J2	SMU	Forldd				
	Pins	Voltage	Pins	Voltage	Pins	Measure			
1	36	5.000		4.800	@0	No			
Power Precondition Leakage Specification									

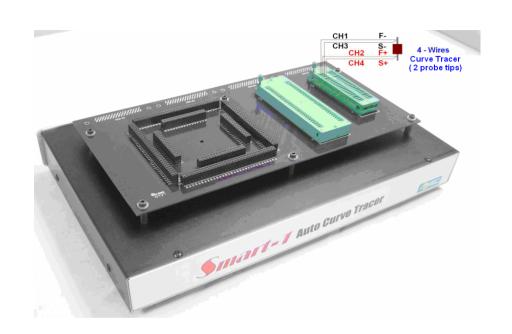
	Tested Group Name	Force (V)	Leakage (uA)	Delay (ms)	Precondition	Method	Pins List
1	LK_IN	4.800	1.0	1.0	1	Serial	@1
2	LK_IN	0.100	1.0	1.0		Serial	@2
3	LK_IO	4.800	1.0	1.0		Serial	@3
4	LK_IO	0.100	1.0	1.0		Serial	@4
5	LK_IOZ	4.800	1.0	1.0		Serial	@5
6	LK_IOZ	0.100	1.0	1.0		Serial	@6
Pow	ver / Precondition) Lea	akage Spi	ecification	/			

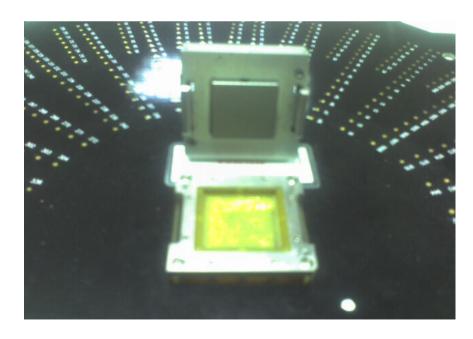

@0=(5,35)
@1=(5-6,8-9,35-36)
@2=(5-6,8-9,35-36)
@3=(1-4,10-25,37-40)
@4=(1-4,10-25,37-40)
@5=(27-34)
@6=(27-34)

	Tested Group Name	Pins	Function Name	Force (V)	Limit (uA)	Reading (uA)	Bypass	
2	LK_IN	5	RD*	4.8	1	0		
3	LK_IN	6	CS*	4.8	1	0		
4	LK_IN	8	A1	4.8	1	0		
5	LK_IN	9	A0	4.8	1	0		
6	LK_IN	35	RESET	4.8	1	0		
7	LK_IN	36	WR*	4.8	1	0		
9	LK_IN	5	RD*	0.1	1	0		
10	LK_IN	6	CS*	0.1	1	0		
11	LK_IN	8	A1	0.1	1	0		
12	LK_IN	9	A0	0.1	1	0		
13	LK_IN	35	RESET	0.1	1	-0.1		
14	LK_IN	36	WR*	0.1	1	0		
16	LK_IO	1	PA3	4.8	1	0		
17	LK_IO	2	PA2	4.8	1	0		
18	LK_IO	3	PA1	4.8	1	0		
19	LK_IO	4	PAO	4.8	1	0		
20	LK_IO	10	PC7	4.8	1	0		
21	LK_IO	11	PC6	4.8	1	0		
22	LK_IO	12	PC5	4.8	1	0		
23	LK_IO	13	PC4	4.8	1	0		
24	LK_IO	14	PCO	4.8	1	0		
25	LK_IO	15	PC1	4.8	1	0		-
Lea	kade Measurem	ent 🕖	Gross Idd / Check F	recond	ition /			

mass production Test to link with hander or by manual test

Production Test


```
Production Test Result (Smart-1 Curve Tracer: Station=1.1.1)
_____
Lot No. = 1 . Operator = 1 . Time = 01/19/2004.03:01:02
Prject = C:\CT\CT\BIN\DEVICE\INTEL\8255
Pin File = C:\CT\CT\BIN\WIRE\8255.WIR
O/S Specification (AutoSet)
(1) I/O Pins: Force = 0.100 (mA), Clamp Voltage = 3.50 (V)
                Open = 3.000 (V), Short = 0.200 (V)
(2) Power Pins: Force = 0.100 (mA), Clamp Voltage = 3.50V
               Short = 100 (ohm)
Idd Specification
VCC = 5.000 (V), Clamp = 20.0 (mA), Limit= 10.0 (mA)
Leakage Specification
(1) LK_IN: Force = 4.800 (V), Limit = 1.0 (uA)
(2) LK_IN: Force = 0.100 (V), Limit = 1.0 (uA)
(3) LK_IO: Force = 4.800 (V), Limit = 1.0 (uA)
(4) LK IO: Force = 0.100 (V), Limit = 1.0 (uA)
(5) LK_IOZ: Force = 4.800 (V), Limit = 1.0 (uA)
(6) LK_IOZ: Force = 0.100 (V), Limit = 1.0 (uA)
#1: Open Pins = 1.2.3.4.5.6.7.8 More
All->1
           =3.491\hat{V}
                      | All->2
                                     =3.490V
                                                              =3.490V
                                                  All->3
All->4
           =3.490V
                        All->5
                                     =3.489V
                                                | All->6
                                                              =3.489V
7->All
#2: Open Pins = 1,2,3,4,5,6,7,8,More
All->1
           =3.491V
                      | All->2
                                    =3.490V
                                                | All->3
                                                              =3.490V
                      I All->5
                                    =3.491V
                                                I All->6
                                                              =3.489V
All->4
           =3.490V
7->All
```


Option:

Universal DUT Board (256Pins)

(512Pins)

(1024Pins)

